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DYNAMIC LINEAR MODELS WITH LEADING INDICATORS
by

Jingxian Chen

Abstract

This thesis proposes a dynamic linear model (DLM) to deal with the problem of
forecasting with leading indicators. We call this type of a DLM as a dynamic linear model with
leading indicators. Our approach expands the conventional one-dimension DLMs to the two-
dimension case. Analyses of some real data sets which initially motivated us to explore our
approach, are used as applications. For reasons of confidentiality they have been coded as Data
Set One, Data Set Two and Data Set Three, respectively. Our approach has a much wider field
of application, for instances, the two-dimension filter problems in image processing, and

estimation problems related to Markov random fields.
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1. INTRODUCTION AND OVERVIEW

The problem addressed in this thesis is to expand upon the dynamic linear model (DLM),
such that it can deal with leading indicators. It is motivated by the analysis of three time series
data sets listed in Tables 1.1 - 1.3, whose plots are shown in Figures 1.1 - 1.3. Each data set
involves several series; for example, Data Set One consists of six series. From those plots,
particularly from Figure 1.1, one can perceive that there may exist a pattern common to all the
series within the set. For instance, all the six series of Data Set One reveal an ’S’ shaped pattern.
This phenomenon motivates us to think of introducing a leading indicator series into the DLM to
improve the forecasts of a series of interest. For example, if we want to forecast series 6 of data
set one, we may want to use data from not only series 6 but also series 1 to 5 to improve the

forecasts of series 6.




Table 1.1 Data Set One

Series 1: Yl Series 2: Y2 Series 3: Y3 Series 4: Y4 Series 5: Y5 Series 6: Y6
t
Y1t Yot Y3, Y4t Y5, Y6t
0 0 0 0 0 0 0
1 0.2 0.3 3.9 0.8 0.8 0.5
2 3.3 1.4 7.2 3.0 2.7 2.0
3 8.5 3.5 12.1 7.1 5.8 5.4
4 14.5 6.1 18.1 12.7 9.8 10.0
5 22.7 10.2 26.2 20.1 17.2 17.1
6 345 14.7 36.6 29.0 26.4 27.9
7 48.2 20.9 49.9 40.9 39.1 39.7
8 64.2 28.5 64.7 56.6 53.2 57.0
9 81.8 37.2 81.6 72.4 70.0 75.6
10 101.2 46.2 98.6 89.7 88.4 95.0
11 123.7 56.6 123.2 111.9 108.8 116.8
12 148.0 68.3 146.6 134.4 131.8 141.6
13 169.4 81.5 171.3 156.4 157.4 170.6
14 194.3 92.8 194.0 181.2 184.4 199.4
15 217.2 103.3 214.5 199.9 211.5 222.3
16 233.9 112.0 232.1 215.3 231.0 225.8
17 252.1 120.7 248.0 233.2 250.8 260.8
18 266.0 129.0 260.8 248.5 270.2 276.1
19 278.9 135.9 273.5 262.6 285.1 293.6
20 289.6 141.6 284.7 273.4 299.8 305.2
21 298.9 146.5 293.7 281.4 312.0 3144
22 306.0 152.6 300.9 288.4 320.7 322.8
23 312.0 153.6 307.7 294.2 327.9 330.2
24 316.7 156.0 298.0 298.5 334.4 337.6
25 320.1 157.6 317.6 301.8 338.9 341.7
26 322.6 158.7 319.9 303.3 342.1 345.8
27 324.3 159.4 320.9 304.1 341.9 346.5
28 325.3 159.9 321.8 304.8 346.5 348.4
29 326.3 160.4 322.7 305.4 344.9 350.2
30 327.7 160.5 323.3 305.9 346.3 351.7
31 328.2 160.7 323.9 306.2 349.3 353.3
32 328.4 160.8 324.1 306.3 350.6 354.8
33 328.6 160.9 324.2 306.5 351.0 356.4
34 328.8 161.0 324.4 306.8 352.1
35 328.9 161.1 324.5 307.0 352.7
36 329.0 161.2 324.6 307.0 353.3
37 329.1 161.2 324.7 307.1 353.3
38 329.3 161.3 324.7 307.2 353.7
39 329.0 161.3 324.7 307.3 352.2
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Figure 1.1 A Plot of Data Set 1




Table 1.2 Data Set Two

t Series 1: Yl Series 2: Y2 Series 3: Y3
Y1t Yot Y3,t

0 9.337 8.43 9.181
1 20.53 22.35 20.78
2 30.35 38.48 29.05
3 40.29 53.58 37.29
4 50.47 67.14 45.53
5 61.08 79.02 52.25
6 71.49 89.23 58.09
7 81.74 98.49 63.5
8 92.39 107.2 68.35
9 103.1 115.2 72.95

10 114 122.9 77.34

11 124.7 130 81.7

12 137.9 137.9 86.5

13 145.3 141.9 89.01

14 153.1 145.8 91.87

15 161.3 149.3 94.27

16 170.3 152.8 96.71

17 179.6 156.5 99.45

18 189 160.3 101.8

19 198.7 164.2 104.2

20 208.7 168.4

21 218.7 172.8

22 228.5 177.5

23 238.8 182.8

24 249.1 188.2

25 258.8 193

26 268.2 198.1

27 278 203.4

28 288.3 207.9

29 299.1 212.8

30 309.9 215.1

31 321.5

32 334

33 346.6

34 359.8

35 372.2

36 385.3

37 395.9

38 406.1

39 416.1
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Figure 1.2 A Plot of Data Set 2




Table 1.3 Data Set Three

Series 1: Yl Series 2: Y2 Series 3: Y3
t
Y1t Yot Y3t
0 .862 119 131
1 3.467 21 .266
2 6.36 291 .355
3 8.902 347 .45
4 10.93 434 543
5 12.46 .525 .63
6 13.78 .b86 .693
7 14.96 .682 .752
8 16.05 .738 814
9 17.15 .802 .845
10 18.48 87 915
11 19.8 937 974
12 21.21 .994 1.098
13 22.28 1.042 1.162
14 23.32 1.087 1.196
15 24.17 1.142 1.196
16 25.06 1.186
17 25.76 1.244
18 26.57 1.285
19 27.39 1.339
20 28.27 1.383
21 29.09 1.403
22 29.92 1.428
23 30.74 1.55
24 31.68 1.59
25 32.53 1.662
26 33.31 1.725
27 33.97 1.725
28 34.68
29 35.42
30 36.13
31 36.98
32 37.81
33 38.76
34 39.55
35 40.32
36 41.25
37 42.08
38 42.7
39 42.92
6
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Figure 1.3 A Plot of Data Set 3




In Section 2 we overview the DLM. We propose the DLM with leading indicators in
Section 3. Section 4 pertains to applications. In Section 5 we briefly discuss our future work.

Details of the forecasting formulae of the DLM with leading indicators are in the Appendix.

2. OVERVIEW OF DLM

DLMs, also known as Kalman filter (KF) models, are models from which a large number
of useful forecasting schemes can be derived as special cases [cf. Harrison and Stevens (1971, 1976)
or West and Harrison (1989)]). In what follows, first we review the general model and forecasting

formulae of the DLM, then we specify some particular KF models pertaining to processing our

data analysis.

9.1 General Form and Forecasting Formulae of DLM

The DLM is often specified as

{ e

0= Gy 0 + ¥y
where

0, is the parameter vector of the system at time t and it is unobservable
F, is the known dynamic regression vector at time ¢,

Gy is the known state evolution matrix at time t,

uy is the observation error at time t,
w is the system error vector at time t,
RETRRET Yy Is the observed series.

The first equation is called observation equation and the second one is called system equation.




Kalman (1960) has obtained the recursive equations and the predictive distributions for

the DLM of form (2.1) under the Gaussian set-up. Kalman’s results are summarized below.
Let “X ~ N(u, 02)” denote the fact that X has a Gaussian distribution with mean u
and variance 2.

If up ~ N(0O, Up), wg ~ N(0, W,), the sequences {u;} and {w;} are mutually

independent, the prior of 6 (before observing any data from the time series) is N(myg, C), then

i) (8 lyy) ~ N(my, Cih (2.2)
where Yt is the observation set (y1, Yo, - - - ¥y); i-e. the realization of Yy, ..., Yy,
my = G, my ) + Ry Fy Qi (v~ F{ Gymy ),
G, = R — R F F R Q)
Ry = Gy Cy G+ W,
Q = Fy Ry Fy+ Uy
) (Y lv) ~ N opg),  for k=12,

— /
where fork = Figk Goyk G " Gegr My 2nd

2 Y ’ ’ '
otk = Fiyk Gigk Gigk1 - Gl G Grar o gkl Gk Feyx

k-1 ’
+ Py ( 21 (Gt+k' : 'Gt+i+l) wt+i( Giyx 'Gt+i+1) + Wt+k) Fiix

i=

+ Ui

Smith and West (1983) have studied the case wherein U and W, are not fully specified,

and their results are given below.

If (u, |U) ~ N(0, U), and the prior of U is an inverted gamma with shape parameter

ngy/2 and scale parameter dg/2, (w; | U) ~ N(O, UW:), (651 0) ~ N(m,, UCB), with W: and



CB specified, and if given U the sequences {u;} and {w,} are assumed mutually independent, then

(otlyt,) ~ Tnt(mt’ Ct) ’

(2.4)

where Tnt(mt’ C,) denotes the multivariate student-t distribution with n; degrees of freedom,

mode my and scale matrix C,, with

m, = Gymyy+ Ry Fy Q) vy — B Gy p),

dt/nt
dy. l/nt 1

Ct =
— dt-l G C* GI W*
Ry = 5 (Gy Cpp Gy + W),

_dt-l FI F
Q = my TP R P

ng = ngq+ 1L

(R, - Ry F, F{ R/Qy)

4 = d Sely, ¥ G 2
¢ = t1+n1( ¢ Gy my1)7/Q

In this case, the k-step ahead predictive distribution is also a univariate Student-t distribution

with n; degrees of freedom, mode ft +k and scale a% +k where

£ +k = Ft+k (Gt+k Gt+k-1"'Gt+1)mt’

G G

2 Y
oerk = Fiyk Gigx

d; k-1
*om L+ F L (W + .Zl(Gt+k '
1=

for k=1,2,... .

10

srka1 " G G Gy

1 1
ko Gkl Grgr) Figx

’
t+1+1) wt+1( t+i+1"

G{ 1)) i)

(2.5)



Hence, a general application of DLM to a practical forecasting problem consists of two
tasks: i) a specification of a particular form of (2.1), and ii) a specification of the distributions of

the errors and the prior of 6 to set the forecasting conditions in one of the preceding two

schemes.

2.2 Growth Models

Because of the trend feature in all the three data sets, we will concentrate on the

specification of growth models.

Growth models are a class of special DLMs. A growth model can be described by two
parameters §; and B, at time t. The former is often called “level” and the latter called “change

of level” or “slope.” In terms of model (2.1), the growth model is defined as

v
0, = , F. = , W = and G, = ;
t 8, t 0 t W t 0 K,

Alternatively, it can be written as
Y, = 6, + uy,
{ 0, = 01t B+ Ve (2.6)
By = by W
Specifically, we use the following three growth models to analyze our data sets.
1) Linear growth model
This is the simplest case of growth models. Here, K, is always specified as 1. This

model has been found suitable for dealing with data having a linear upward trend; for

instance yq; in data set 3.

11




2) Segmented linear growth model
Examine the plots of data set 2 (Figure 1.2). All the three series show an upward

trend, but the trend changes at its slope about t=13. Therefore, K, is specified as

1, ift # 13,

0.9, ift = 13.

In general, if the change point of the trend is at t, the specification of K; is of the

form

1, ift # tg,

K, = {
t
Positive constant ( # 1) , at t=t.

3) S-shaped growth model
This model is suitable for data set 1; such data shows a trend in three stages: at
first, for t < 12, the growth rate appears increasing, then it appears to be constant,
and finally, for t > 16, it decrease and tends to zero. In effect, the trend is an S-

shaped one. Thus for data set 1, K; is specified as follows:

1.15, ift < 12,
Kt:{l, if13 < t < 15,
0.85, ift > 16.

The specification of K, for a general ’S’ - shaped trend is
Cy (constant > 1), ift <ty
Cqy (constant € (0, 1)), ift > to,

where t, ty are terminals of stages 1 and 2.

12




3. DLM WITH LEADING INDICATORS

Now we start our expansion of the DLM. Before doing so, we need to introduce a more

elaborate notation. Let

YZ " denote an observation on the £-th series at time t,

3

0 0t is a state parameter, standing for the level of the ¢-th series at time t,
¥

B8 Lt is the other state parameter, reflecting the change of the level of the
¥

¢-th series at time t,

ugy is the observation error of the ¢-th series at time t,
b

Vot and W, are the system errors of the ¢-th series at time t, corresponding
) 2

to parameter §, and B, ,, respectively.
b ’

3.1 The Forms of DLM with Leading Indicators

Without loss of generality, let {Yo .} be the series of interest and {Y; ;} be the leading
Y 3

indicator series. Assuming a growth model, we introduce a weight 7 to incorporate the effect of

the indicator series in the series of interest. The following two forms can be considered.

1) Weighted on level, 6., t
For the leading indicator series, we have, as before
Yig =01y + Wp
01p = 1t Pl T VLeo
Bre = Kebre1+¥ies

and for the series of interest, we have
{ Yo = 09y + Uop
By = 141+ (=M 04+ Vo
2) Weighted on slope 8., t

Yig =0t + e

{ O1¢ = 0141+ P11 TV
Brp = KeBrpat Vies

13

(3.1a)

(3.1b)

(3.2a)




Yo = fg¢ + up
{ (3.2b)

Opp = bg41+ B + Voo
Boy = 1Ky Bgpa1 (1=7) By g+ Wo -

As said before, for Data Sets One, Two and Three, the linear growth model, the
segmented linear growth model and the S-shaped growth model are adopted respectively. For all

three data sets, the second form performs better than the first one.

The assignment of weight v is subjective; it is based on the forecaster’s belief in the
chosen model to describe the series of interest, and the potential benefit from the use of
information from the indicator series. For example, if y=1, Y, does not play any role and (3.1a)

is reduced to a steady model, whereas (3.2a) is reduced to a conventional growth model.

o)

In general, if we partition the parameter vector 0 ,asf (= with O(It) being the
he -1 .y

o?)

state parameters specific to the series of interest and 0(2';) being those state parameters containing
*y

“pattern information” commeon for all series. Then the general expression of the DLM is of the

form
o

Yo = Frlgp + ugys

Opp = My Opy + Jgi 0010 + Yoo (3.3)
where

c{h g{12) 0 0
Hé,t = ’ Jé,t - 3
0 (I-T))

g r,a®)

14




Ggll) GEH)
G, = partitioned corresponding to
G(21) G(22)
t t
1
"g,t)
g, =
ot
’ 2
"F,t)

Tyisa diagonal matrix with entries taking values between 0 and 1, when ¢&=1,T'; =L

3.1.1 Relationship to a 2-Dimensional KF Model

A two-dimension KF model is often defined as

—_ Y4
Yoo = FtOp¢ + gy

0, = By 0pe1 + Joufe1t Keborpr ™ Ve (3.4)

[cf Habibi (1972), Woods and Radewan (1977), Woods and Ingle (1981), Katayama and Kosaka
(1979), etc.]. In this sense (3.3) can be regarded as a special case of (3.4) with K, , = 0. From

now on, we call this expansion form of the DLM as the DLM with leading tndicators.

15




3.2 Inference and Forecasting Formulae

Let us consider a simple example of the DLM with leading indicators to demonstrate our
method by which we solve the inference and forecasting problem of the DLM with leading

indicators. Then, we write down the general inference and forecasting formulae.

3.2.1 An Example of the DLM with Leading Indicators

Suppose that observations Y10 ¥1,2 Y2,10 yp 9 are available and predictions Y2,3 and

Y2’ 4 are requested. Assume the suitable model is (3-2) and the priors for 01,0 and 51,0 are
(91’0 |U) ~ N(ml,O’ UCl,O)’ (ﬂl,OIU) ~ N(bl,O’ UUl,O)’ (u.,t|{U) ~ N0, U), (v., t|U) ~
N(0, UV), (w.,t|U) ~ N(0, UW), the prior of U is an inverted gamma with parameters 112_0 and
70-. We also assume the same independence conditions as we deal with the DLM [cf. West and
Harrison (1989)]. Besides, we assume that 02,0 = 01’0 + sy, 92’0 = ﬁl,O + s, where sjand s, are
known constants. Under these assumptions follow from (3.2a)

91,0 =010 Bro="+10

61,0 =910 T A0 T VL, Pra=kPro* ¥i,1>

By9=019+ Utk +Vii+ ¥+ V12

Bro=kokiBrgtkowy1tVia,

01 4= 019 + (4K (1ky(1+kg)))By g + vy 3 + (1+ky(l+kg))wy 3 + vy 5

+ (I4kg)wy o + vy 3t Wy 3+ Vi4s
P14 =Ky KBy g+ kakgkowy j +kgkgwy g +kgwy 3+ Wy,
Yi1=00tProt Vit

Yyo=010+ +k)Brot v+ ¥t Ve

16




Alternatively, it can be represented in the matrix form (6’1, Yl,l’ YLQ)’ =LZ,

where  ©; = (819 B10%1,1F1,1%,251,2351,3%,4 14"

1
0 1
1 1 1
0 k 0 1
1 1+k1 1 1 1
L = ,
1 14k tkokg 1 14k 111
1 1k (1+kg(l+kg) 1 Itkgtkoks 1 l+ky 1 1 1
0 kykakok; 0 kekgky 0 kgkg 0 ky 0 1
1 1 1 0 00 0o 0 0 0 1
1 l+k1 1 1 10 0 0 0 0 0 1
| _

—_ 7
Z=107081,0v1,1 71,1 1,2 ¥1,2 V1,3 ¥1,3 V1,4 ¥1,4 "1,1 U1,2 I

ng d
Assume that (Z | U) ~ N(g, UEO) , U~ 1G( —QQ, —2Q ). Then, by the properties of the multivariate
normal distribution, we can obtain

(0100 B0~ F1,0 Bra 1 U yp 1 ¥12) ~ NMy, UDY),

1)
4
(01,00 Bro 2 P10 Pra 1 ¥1,10 91,20 ~ oMy ngt2 Zy)s

D0+2 d(l)
(U] 1,10 Yl,g) ~ 1G( 9 —2—) )




where Ml’ )P d(l) can be calculated out (for brevity, we omit the formulae for calculating Ml’
5, dV).

Similarly, (3.2b) offers a tool to obtain the relationship between (02’0, ﬂ?,O’ TR 92’4,
By g Yo 1, Yo Yo 3 Yo q) and By g 1o s 010 Pra V2,0 Wo,0 7 Vo0 Y20 P20
..y u2’4), and we can get the predictive distribution (Y2’3, Y2,4 | 1,10 Y1,2 2,10 y2,2) in which

the leading indicator series {Y; {} is incorporated.
)

3.2.2 General Formulae

Let n be the forecast horizon;

tet Y§D = Y 1, Yo and yf) = yg = [yg 1 wg, ' be o realization of v,

2) _
Y& = {Ye,t+1’ ] YZ,n’

1)
1) _ r (2 = / _
let 1.1§ = [ue,li T uﬂ,t] ) Ll% = [ue,t+1a Tt ug’n] ) ug,n = 22) ’

5
e

=

— / —_ / /
0= 000 1o Ol 6= 010 ¥11 s WLl
Let §, ; denote all prior information (including the data) before observing any data from

series Y v

For model (3.3) consider the two scenarios described below.
Scenario A:  Let (é]¥g) ~ N(m %), u,~NO, Uy n) sequences {ug b {wped are

independent, u, X, U1 o are known; assume that after filtering €-1 series,
b

i8



=2, 3, ... , (8p 1% ~ N(m,_;, Cyq) has been obtained and that u, =~ ~
N(0, Ul,n)’ Yon ~ N(0, We’n), sequences {ue,t}, {"e,t} and {ee_l,t|ye_1} are
mutually independent, (0, 1574.1) = (8¢ ¢ | YQ-H) + 8 o With 8y o known, U,

and We’n are also known.

Scenario B: Let (¢|¥g, U) ~N(p, UZ), (91 ,10) ~N(6, UU, ), given U sequences {uy b
{wl t} are independent; p, X, Uy, are known, U is unknown but (U|§'O) ~

IG(nl’O d—lﬂ) Assume that after filtering &1 series, £=2, 3, ... , (81134 U

. ering ries, €=2, 3, ..., (©y_11¥¢ 1> )

2 2
] 60 o0 :
~ N(my_;, UC, ) and (U [¥¢.1) ~1IG -5 —2—) have been obtained; we also
assume that (u,  |U) ~ N(0, UU, ), (wp,10) ~ N(0, UW, ), given U,
sequences {u, i {w, ¢} and {01+ | Yﬂ-l} are mutually independent, U, ., W,

are known, (02’0 (Vo0 ) = (9e-1,0 [¥op )+ 800 with 80 known.

We have the following formulae for inference and forecasting.

1) For Scenario A

The inference and forecasting formulae of series 1 are

o m C C C
1 %1 01 01y11 f1v1
. | .
Y ~N , | © C C , .
i) -S M My11 v1.1f%1 Vi1 Y1.12 (3:5)
2)
Y C C C
g My v1.9%1 Y121 Y1.2
L i LL . A
Y11
where m, =Ly, : = Fm, ,
01 (myl,g) 191

19




y1 10
(C , )_ 1.1% _ ¢, W
91¥1.1 191.2 1
¥1.291
I
G, I

0 F
o
F = 0 F'2
0o F
; 5, G
E-INT 0y b 01 (3.6)
11) ( 2)!!0’ Z']_,t) ~N . s C = ’
v 1.2 yiaf1 V12
— -1 _
where m91 = mg, + 091Y1.1 (Cyl.l) (Yl,t myl.l)’
By, = My, + Oy Gy ) (¥1,0 = my) )
20




291 g"m.z 291 Cglym g“’lym el (c -
vi901 Yi2 | T v1.901 Y12 )\ V121 Y1.1(y1_191 Y1.12)’

iii) specifically, the k-step ahead predictive distribution is

(Yl,t+k | YO, Yl,t) ~ N(ﬁ1t+k, €t+k, t+k) fOI k'—:l, ey n—t, (3-7)

where o, +k is the k-th component of ﬁlyl.2’

¢ +k, t+k is the k-th diagonal entry of Cyl.

5
Recursively, for series ¢, £=2, 3, ... , we have
e m C C C
¢ 9 ) ve1  Oeves
. 1) .
1) YE Yo1 N myé.l s Cye,loﬂ Cye.l Cye.12 s (38)
2)
Y C C C
& Mg veofe Ye21 Ye.2
i LL i

m
Ve /
where m, =L, my. + s, 1 =Fm,,
0, | {4 (my2.2> b,

C, =L,C,, L, + M,|® ™/
b, = le“e1 et e[ wﬂ,n] ,

Cy210£ — (C C ),: F/C
C 0ye1 Pe¥e2 75

Ve.2%

21



( Cye 1 Cye 12 )

: : = FC, F+ U

C C 9 ¢n’
Yeor Ye.2 ¢

I
Hy 1 Je1
Ly= | HgoHy, Hyodp ) :
Hy o Hyy o By g Hyolgy Hy o Hyglgo 0 Jon
L -

F is specified as the same as in (3.5),

I
Hyy
sp= | Hgo Hy 89,0 3
Hﬂ,n "Hé,l
.
I
Hy ) I
My= | HgoHy, Hyo I ;
Hy ooy My oo Hyo Hy ooHpg oo 1
L _
e my Cy Co v
i (Ceterve) ~Mla ) el o) (3.9)
YEZ) b 2et my C C
Y £.2 Yo.9% Yoo
. _ -1 B
where moz = mee + Cee-‘/e.1 (Cyé.l) (YZ,t myﬂ.l)’

22



iii)

where

C ¢
9, 0¢Ye.2

C C
Yeo%p Ye2

1
= C C - b
Myeo my, o + Cypor Crpy) Gep =™y o1

Cy

C C
¢ 8¢Y¢.0 06¥¢.1

C C C
Ypofy Ye2 Ye.21

the k-step ahead predictive distribution is

1 ot ~ ~ _
(Ye,t+k | Ye_l, Yﬂ,t) ~ N(mH_k s ct+k, t+k) for k—l, 2, ey Il—'t,

m, +k is the k-th component of f['lyé.Q ,

6t+k, t+k is the k-th diagonal entry of éyé.Q .

2) For Scenario B

The inference and forecasting formulae of series 1 are

2] m C C C
1 o 8, 01y11 91912

o Y50 U|~N| | my, |0

C C
- 1.1 ¥1.191 V11 ¥1.12

2)
Yg My1.0 Cy1.001

C C
Y1.21 Y12

= Cy_el.l (CY 1% e ) ;

(3.10)

(3.11a)




: _ . . .-
(2) m C C C
1 51 ! 91¥1.1 91912
YD g | ~T m Wlg L, ¢ © (3.11b)
1| Yo npo ™ "ol viafr Vi1 Y112 e
2)
Y C C C
—S My, 9 v1.991 Y121 Y12
i | A 1.
where all submatrices are specified as the same as in (3.5);
) ] oy dig
i) (U150 v16) ~ IG(—Q—,—z—) (3.12a)
e 1y Cy Co.y
(i lspyip ) ~N{ g |V o 112 ), (3.12b)
Yiz) S0 S My, 9 C C
Y . ¥1901 V1.2
m c C
( 1 ) ~T o) Gt 41 f1y1.2 (3.12)
YSQ) .).]0’ Yl,t nl’t ﬁ'ly LA 1) ,ﬁ C C ’ 1€
Y 1.2 y1.291 Y1.2
Where nl’t = nl,o + t, dl,t = dl,O + dll,t ;
! — ! _1
dy = (= myy ) Oy )7 (e =y )
all submatrices are specified as the same as in (3.6);
iti) specifically, the k=step ahead predictive distribution is
Y 5o Y1) ~ Tn, (F Ut for k=1 3.1
( 1,t+k | Yoo ¥ ) ~ nl,o(mH-k’ ﬁﬁ Ct+k, t+k) , for k=1, ..., n-t, (3.13)
h 2! s the k-th tof . .,
where fg /) s the component of fy,
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Et—{-k, t+k is the k-th diagonal entry of Cyl.Q .
Recursively, for series ¢, €=2, 3, ... , we have
T N r e
o m C C C
¢ ) B¢ Ove1  PVe2
. 1) |-
Y ,Ul~N , Ul C C , 3.14
i) 2 Yo1 Mye1 Ye.1% Cyer Yea2 (3-142)
2)
Y C C C
v} gy Voole Ye21  Ye2
L - LL i L A
(5] m C C C
¢ 9 . o1 P0Ves
YW g, |~ 1T m 00| & c o (3.14b)
Yy | Yo ng o Yo' Beo| veife Yer  Yei2 e
2)
Y C C C,
& Myg 9 Yooy Ye21 Ye2
i . LL - L 1.
where all submatrices are specified as the same as in (3.8);
n d
.. _ ot %ot
i) (Ulfpp You) ~ IG(T’—Q_) (3.15a)
i C C
e my 9 8,y
( ez)IYe-l’ Yor U) NN((m ‘ )’ v (- ¢ (-f L2 )) (3.15b)
i c
( | ) b0\ der [0 Peves (3.150)
sitsense) g ((mt )i (o) 0t )) @
3 0.2 y8.29e Y&Q
where Doy = gy + t, dZ,t = d2,0 + d?i,t ,
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r ' -1
dgy = (oo~ Myp ) Cyp ) Bee =™y )
all submatrices are specified as the same as in (3.9);

iii) the k=step ahead predictive distribution is

d
W ) o _
(Ye,t+k I yi-l’ yg ) ~ Tne’t (mH_k, n——'e,t ct+k, t+k) ’ for k—l, 2, ee y n—t, (3.16)

where My y o0 Eopk, tak 2T specified as the same as in (3.10).

It can be shown that equations (2.2) - (2.5) are merely the marginal distribution of (3.6)
and (3.12c) respectively. Since the DLM with leading indicators deals with the series of interest
in conjunction with indicator series, any assumption on the independence of 9e,t-1 and aﬂ,t is
irrelevant. The only way to treat the correlations among all state parameters, is to represent the
probabilistic structure of the DLM or the DLM with leading indicators, and the mechanism of the

filtering procedure, in terms of the joint distribution of the state parameter space.

4. APPLICATIONS

We apply our approach to the data given in Section 1.

If the sequence [yl, Yor ooy Yo Yppls o+ Y] is observed from the time series of interest
and we were to use the first t observations to predict the next m-t values , then we specify the

curnulative square error (CSE) as

m-t
CSE(m, t) = k§:1 (yt+k - E(Yt+k | 2’1;))2 3

where (?t +k| y¢) is the k-step ahead prediction based on observations y;. We use CSE to measure
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the forecasting performance of our approach. The smaller the CSE(m, t) is, the better the

forecasts will be since CSE(m, t) reflects the total loss of the (m-t) forecasts when the loss
function is a quadratic function.
We select an S-shaped growth model, a segmented linear growth model and a linear

growth model to analyze Data Sets One, Two and Three respectively. We set the conditions for

data analysis in the scheme described as scenario B. Specifically, for the DLM, we specify the
initial conditions as
the prior distribution of U is an IG (2.5, 1), ie. ng =25, dy =2
(vi1U) ~ N(0,0.01 U); (w; | U) ~ N(0, 0.2 U);
(9 1yg: U) ~ N(Yg, 0.01U); (Bglyg U) ~ Ny =Yg, 01 U);
Y, is assumed available; (% lyg U) is independent of (8 |yg, U)-
Analogous to the above specification, the initial conditions for the DLM with leading

indicators are

8,0 — E(0, )
. £-1,0 ¢-1,0 -
with 320 = E((ﬂe-l,o - E(Bg.1,0) )(63-1»0_ E(fp10) Ae1,0~ EBe1 o) ¥er U)/U;

O 1500) <, 2, ) B0 ) @i < s b

(vgy | U) ~ N(0, 0.010); (wg 1 U) ~ N(0, 0-20).

Part of our analysis results are listed in Tables 4.1 - 4.4. These results show that the use

of DLM with leading indicator can improve forecasting significantly, incorporation of two or more
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indicator series may not be more effective than incorporation of one indicator series (cf. Table
4.2). Table 4.4 offers an example to assign the value of v intuitively. From Figure 1.3 the data
plot of series Y3 looks quite similar to that of series Yo. So a small v (namely, v = 0.05) leads to
much better forecasts than a bigger one (y = 0.975 here). It also gives us an idea of how the
variances of the predictions will be if the assignment of d is not appropriate. In this case dj = 2
> d; = 0.005684 (when ¥ = 0.975), E(Y40| Y19) = 24977 V(Y40|y10) = 63.0757 . If we

shrink d from 2 to 0.05, the above variance will reduce to its 1 /40 of the current values and the

mean remains unchanged.
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Table 4.1 A Comparison of Forecasts of Y3 of Data Set One Series
from the Growth Model and from the 2-d Model (y = .05)

Forecasts from S-shaped Growth Model

Forecasts from the DLM with leading

indicators (Indicator series: Y;)

t | Observation mean variance mean variance
21 293.7 292.51 11.65 293.98 5.25
22 300.9 299.71 18.77 301.44 6.27
23 307.7 305.83 29.40 307.45 7.19
24 298.0 311.04 43.59 312.15 8.02
25 317.6 315.46 61.19 315.70 8.78
26 319.9 319.22 81.99 318.30 9.51
27 320.9 322.42 105.72 320.16 10.21
28 321.8 325.13 132.09 321.51 10.92
29 322.7 327.44 160.80 322.54 11.62
30 323.3 329.41 191.59 323.34 12.32
31 323.9 331.07 224.21 323.91 13.03
32 324.1 332.49 258.42 324.29 13.74
33 324.2 333.70 294.02 324.53 14.45
34 324.4 334.72 330.80 324.7 15.17
35 324.5 335.59 368.62 324.82 15.88
36 324.6 336.96 407.32 324.92 16.59
37 324.7 337.50 446.79 325.02 17.31
38 324.7 337.95 486.91 325.11 18.16
39 324.7 338.34 527.59 325.18 19.60

CSE 1313.48 208.408
'20 111.567 39.006
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Table 4.2 A Comparison of Forecasts of Y of Data Set One from

the Growth Model and from the 2-d Model (with v=.05)

Forecasts from S-shaped
Growth model

Forecasts from the DLM with leading indicators

Indicator series: Y5

Indicator series: Y 4 and Y5

t | Observation mean variance mean variance mean variance
21 314.4 316.13 38.80 317.96 11.95 317.62 14.84
22 322.8 325.57 62.49 327.67 14.31 327.11 17.61
23 330.2 333.60 97.87 335.46 16.47 334.76 20.02
24 337.6 340.43 145.12 341.55 18.42 340.85 22.20
25 341.7 346.23 203.73 346.08 20.20 345.39 24.27
26 345.8 351.17 272.99 349.27 21.89 348.52 26.29
27 346.5 355.35 351.98 351.47 23.54 350.55 28.30
28 348.4 358.91 439.79 353.14 25.17 352.30 30.31
29 350.2 361.94 535.40 354.39 26.81 353.42 32.33
30 351.7 364.51 637.91 355.63 28.45 354.65 34.34
31 353.3 366.70 746.51 359.97 30.10 356.08 36.35
32 354.8 368.56 860.41 358.22 31.76 357.32 38.36
33 356.4 370.15 978.94 359.28 33.42 358.28 40.37

CSE 1313.48 224.58 149.56
’20 376.121 319.94 264.66
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Table 4.3 A Comparison of Forecasts of Yq of Data Set Two from the

Growth Model and from the 2-d Model (y = .975)

Forecasts from the Segmented
Linear Growth Model

Forecasts from the DLM with leading indicators

(Indicator series: Yo)

variance

t | Observation mean variance mean

11 81.7 82.49 7.49 82.75 6.72
12 86.5 87.15 13.50 87.58 11.87
13 89.01 91.34 22.65 92.42 20.48
14 91.87 95.53 36.50 97.24 33.32
15 94.27 99.72 56.20 102.03 51.08
16 96.71 103.91 82.88 106.80 74.41
17 99.45 108.10 117.68 111.53 103.90
18 101.8 112.29 161.75 116.25 140.10
19 104.2 116.48 216.22 120.94 183.49

CSE 437.366 839.528

’10 35.024 45.546
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Table 4.4 A Comparison of Forecasts of Y3 of Data Set Three
from the Growth Model and from the 2-d Model

Forecasts from the linear

Growth Model

Forecasts from the DLM with leading indicators
(Indicator series: Yo)

vy =.975 vy =.05
t | Observation mean variance mean variance mean variance
11 974 9677 .4059 .9686 1299 9875 .0880
12 1.098 1.0210 7314 1.0224 .2295 1.0462 .1051
13 1.162 1.0742 1.2883 1.0762 .3961 1.1009 .1210
14 1.196 1.1274 2.13821 1.1300 .6443 1.1527 .1353
15 1.196 1.1807 3.3428 1.1837 L9877 1.2027 .1484
CSE .019 .018 .009
’10 .005507 005684 .002693
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5. FUTURE WORK

Our contribution in this effort on developing improved forecasting methods is the
expansion of the DLM such that it can incorporate indicator series to improve forecasting. And
because we have not added any additional restriction on the 2-d model, our methodology can
work for general two-dimensional dynamic linear models provided they can be specified as
sequential models of parametric structure. Thus, our approach has a wide field of applications,
for instances, the two dimensional filter problems in image processing, and some estimation

problems related to Markov random fields.

Despite the results that we have had so far, we need to do further work to more
generalize our achievements. Namely,

1) Weight v can be specified as a distribution if the forecaster is not sure to specify 7 at a fixed
value. This specification will make the use of the DLM with leading indicators much more
difficult and complicated. However, we believe, with the help of some simulation
techniques, say, Gibbs sampling, we can solve the forecasting problem of the DLM with
leading indicators with weight vy specified as a distribution.

2) Explore new approaches to reduce the variances of the forecasts. From (3.12) and (3.15), we
can see that the posterior mean of U - a main factor affecting the variances of the forecasts -

is determined by the specification of the used DLM. So, another direction of our future

work is to study new model monitoring techniques to reduce the variances of the forecasts.




APPENDIX

Derivation of Predictive Distributions

We derive here the inference and forecasting formulae given in Section 3, via some
elementary distribution theory. Specifically, we need to apply the following well-known

propositions pertaining to the properties of the multivariate normal distribution.
Proposition 1 IfX ~ N(u E), then CX ~ N(Cp, cxC).
X X pX
”» 21 K1 11 *12
Proposition 2 If ~ N /-‘Q) , , then
( X9 ) (( ( 291 222>)

) -1 SR
i) (X 1Xg) ~ Nipp + Byp¥y (Xo=iig)s T1y — TpaTaa¥oy) il 299 38

nonsingular.

Proposition 3 If X is a p-vector and (X |¢) ~ N(p, ¢'1 %),

¢ ~ G(%, %) i.e. ¢ is a gamma random variable with shape parameter %

and scale parameter -(21, then
. n¥ a* . * * 1
i) (¢]|X=x) ~ G(—Q—, —2—) with n* = n+p and d* = d+(x—p)'Y (x —p);

i) X ~ Ty (s S5
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Al. Derive the inference and forecasting formulae of Y.

Recall the model form for series 1

Y
{:m =F b + upy

1,6 =Gt 001+ Ve

From the second equation follows

81, = GGyy G+ Gy Gawyy+GGywygt-

=[Gy Gy, Gy -+ Ggy =+, L 0, -+, 0] &, for t=1, 2, ..

810=1L0,..,04,

where ¢ = [03,0 wll,l wll,n],‘ Thus, 8; = [0’1,0 0'1’1 9’1’11]' =L ¢ with

I
Gy I

And from the first equation of (A.1) follows

Y1,t=[°“'° F 0---0] 6, +u fort=l,..n.
t 0’s
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Therefore Yl,n =F 6, + Uyn= FLé+ Y5 with

/ _ /
F = 0 F2

Under scenario A, i.e., (¢|¥) ~ N(p, X), uy ;, ~ N(0, Uy ), and {ug 4} {w; 4} are independent
sequences, applying proposition 1 yields

- - - - [

! 9, Co, Co1v11 Co1v1.9
.
Y ~N , C C )
S M My1a v1.101 Y11 Cyi12
2)
Y C C
: S Myi.2 v1991 Y121 Cy1.0
L i L L i i
here =Lp, / ' Y = FLp, C =
e My =M F (my, ; My o) Bo S0y Cg’1.1‘5'1’
C -c_ ,C =LXIL, (C c - LYLF,
v1.901 ~ 012 01 ( 91¥1.1 "1Y1.2)

y Yy
1.1 1.12 = FLTLF + U,
B

C C
Y121 Y12
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The above one is the prior joint distribution of 91 and Yl . Then, applying proposition 2 to the
¥

joint distribution, we obtain the conditional distribution of ©; and Y&Q) given observations

1
Yg )= Yig = (i1 yl,t)/ as -

m C C
& |y0,y1t)~N<(-01 ) (~91 o1¥1.2 >)
Y§2) o "Y1 Cyl 201 Cy1.2

1
h = c C - ,
where 9, ™ * Soyyy4 (Cyy ) (e my, )

Cq

C C C C
el é"lym 091 21Y1.2 C"lym e (o .
vi1.901 Y12 =\ v Y2 )\ Y1.1( ¥1.1%1 Y1.12)'

In particular, the joint predictive distribution of YSQ) given observations yq ¢ is a multivariate
-"

normal specified by

P59 v10 ~ Ny, Gy )

Under scenario B, ie. (¢]¥p U) ~ N(p, UZ), (u; ,1U) ~ N(0, UU, ), given U
. ] 20 d1,0 .
sequences {u; {} and {wy ¢} are independent, (U]§,) ~ IG (—2—- , ——2—), then, similar to the

above case, we have
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e m c C C
1 9 8 01v11 f1v1.2
Nl .
~N . U|C C ,
Y| 500 my v1.10, 5711 ¥1.12
2)
C c
YS My1.2 )’1‘29103'1.21 1.2
] i LL i il
o | | C C C 1
m
1 01 9 01y1.1 91912
Yl | ~T m Aol ¢
- Y0 ny o Y11’ B1,0 v1.1%1 G4 CY1.12 ’
2)
Y C C C
3 My10 v1901 Y121 Y12
I ) ] i iR

where all submatrices are specified as the same as under scenario A.
. - s 0, .
Applying proposition 3 to the distribution of ( 52) | U, Yo Y1 t)’ we obtain
Y Y

Ulgg 1) ~ 16( 55,

o C C
8 . i 9y 01¥1.2
l Yo Y1 ¢ U) ~N -~ ) U ~ - )
Ygz) 200 11,t my, o c
Y 1.2 y1.20 ¥1.2

m C C
(61 170 Ylt) ~T (( b1 ) —-—dl’t< % 1912 ))
Yo < n i ' A ~ = )
YS?) ) 1,t myl.il 4 cy1 291 Cy1.2

—_ —_ !
Where nl,t = nl,o —+ t, dl,t = dl,o + dl,t’

!

— /
= Qpe— my, ) (©

1
vy Qe ™My )




A2. Derive the inference and forecasting formulae of Y .

The model formulating Y, is

— /
Yoo = Fplpy + Yo

b

(A.2)
Bpp = Hgifget+ Jge 1t Vo
where
c{l) g{» 0 o
H = J =
et v Y0t ’
' ’ 0 (I-T)
21 22 ¢
O Wil 1
ng) Ggu) i "(1t)
G = partitioned corresponding to 0.,t =" ,
21 22 9
a(?)  G{*) o%)

r, is a diagonal matrix with entries taking values between 0 and 1, when ¢=1, T} =L

From the second equation of model (A.2) turns out

8, = Hop-Hpy 0o +Hyy oy 810 Tt et P01

+ HyyHygwyy +Hy o HyaWeo ot Wy

= (Hy - Hyp By ol gy 00181 + (Hy ¢ Hy 1) 80

+

0
[He,t"'Hé,l’ He,t"' Hé,?""’ﬂe,t-l Lo---,0 ‘:Wz njl.
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— ' 0
Therefore, ee = [%’0 s %’1 y "ty ole’l, ey ole’n] = Le ee_l + S + Me [w

M, specified as

I
Hyy It
Le:
HyoHyq Hyods1
Hypo-Hyyp  Hppo-Hyolgy
I
I
H,, I
M= | HyoHy, Hy o I
Hy By HypHyo

Thus under scenario A, i.e.

(©p.117g.1) ~Nmy 1, Cp )y ugp ~NO Up ), wy,, ~ NO, Wyp),

(02,0 1901 = (ol—l,() | YE-I) +80 800 is a known constant vector,

u,,}, {w and {© ¥ are mutually independent,
et gt -112¢-1

applying proposition 1, we obtain the prior joint distribution

)

vi

v

C
)

C
Ye.1%

C
Ye.2%

C
8¢¥e.1

C
0400

C
Yg.2

Y012

82,0°




where my =

Applying proposition 2 to above prior joint distribution yields the conditional distribution of Ge

and Yf) given observations y, , as
=y

i) c c
(ee 131 Yet)~N(< % ) ( % Oeye.2>>
2 (-1 2 y ﬁl ’ ~ ’
Y Ye.2 Cypoty veo

3 B 1
where Mg, = My + Oy Orey)” Ben ™ By
} 1
= c C - ,
Mygo my, o + Cypoy Crg )™ Bap oy, )
C ¢ C C C
) 0¢¥g.9 ) 0000 0¢¥0.1
1
= - cl (c .
¢ C C C C ye.l( Ye.1% Cye.m)
Vo209 Ye2 veole Ye2 Ye21
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In particular, we have the following joint predictive distribution:

¥ 150 y) ~ N(y, ,» C

ye.z)‘

Under scenario B, ie. (8,113, U) ~ N(m, 4, UCy 1),
(l—ll,nIU’ Ye.1) ~ N0 UUe,n)’ (‘;'e,nlie-l’ U) ~ N(O, Uwe,n)’
i 20 de0
(Ul5ey) ~16(57 )

given U sequences {u,}, {wg .} and CIRIRR -1} are mutually independent,

we have the following

e m C C C
¢ ) ) 00%01  Ye¥e2
1) .
Y U |~N .Ul c C C ,
2 e-1 "ye1 ve19e Ve Ye.12
2)
Y C C
v} MYg9 vefe e Dea
e ] _ C C C 11
m
¢ ) ) 00ve1 902
YD g,y |~ T m , deo| C Cy
: Ye-1 ngo || Vel oy ve1fe Yea .12
2)
Y C C
| 2 | Myg2 veoly Yea1 Gy
. I ) 1
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Yeole Ve
m C
( 6 | ) By det (0 Py
$2) Yoo1r Yot n, i, y W 3 —
where ngy = g0 + t, dé,t = dé,O + d,Zt ,

r / -1
de,t = (Yﬂ,t - ng_l) (CYZ_I) ()_Ie,t —ng'l)’

all submatrices are specified as the same as under scenario A.
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